BAPC 2013

STATS + SOLUTIONS + SCORES

SUBMISSIONS OVER TIME

AVERAGE CODE LENGTH

Solutions

Flying Safely

Minimum spanning tree with weight 1 for each edge
Tree of n nodes has $n-1$ edges
Forget the spanning tree and output $n-1$
O (1)
$+O(\mathrm{~m})$ to read input

Incognito

Group attributes per category Hashmap

Possibilities for each category

- No item
- Exactly 1 item

For n items: $n+1$ possibilities
Use multiplication
Subtract 1 for the no disguise

$O(n)$

Administrative Difficulties

Just do the bookkeeping
Maybe using a hashmap
Don't do it wrong

- $\lceil 42000000,01\rceil=42000001$
$O(n+m)$

- team "Royals"

Destination Unknown

Run Dijkstra's from s, f and g

Check 'triangle equality' for each destination i

$$
\begin{aligned}
\circ & d(s, f)+d(f, g)+d(g, i)
\end{aligned}=d(s, i) \text { or }, ~(s, g)+d(g, f)+d(f, i)=d(s, i)
$$

More ideas

- Keep extra state "seen (f, g) " in your Dijkstra's
- Double all weights (carefully), subtract 1 from (f, g), is distance odd?
- Use Dijkstra's from s to make a shortest-path-DAG and do a BFS from (f, g)
$O\left(n^{2}\right)$

Cracking the Code

Check for each encrypted message if it could match

- Walk through the string

If you've seen a letter before, it should map to the same letter

- Check both decoded to encrypted and encrypted to decoded
- If it matches, save the matching of the letters

Print "?" when there is not exactly 1 matching for this letter

Don't forget

- When 25 letters are known, so is the $26^{\text {th }}$!
O (size of input)

Jailbreak

There must be a 'splitting' point

- Where paths converge from outside, prisoner 1 and prisoner 2

Three BFS's

- From outside, prisoner 1 and prisoner 2

Splitting point has minimum sum of these three distances

Careful

Bribe

Memoization / dynamic-programming
Calculate probability of success, for each
Amount of henchmen already converted
Subset of henchmen already asked
Could use a bitmask
Money spent can be deduced from that subset

Answer is probability with 0 converted, \varnothing already asked

$$
O\left(2^{n} * n^{2}\right)
$$

Getting Through

Binary search over radius
Check if radius r is possible
Extend all circles with r

- Move walls by r
- Possible iff no path from left to right wall via overlapping circles
$O\left(\log 10^{5--6} * n^{2}\right)$
Or use a minimum spanning tree $O\left(n^{2}\right)$

Hidden Camera

Trick

- Move camera to origin
- Rotate such that base wall is on x-axis
- Construct boundary lines and find intersection points

Calculate both areas
Look in your cheat sheet...
Careful with floating points, small rounding errors can lead to finding no intersection point at all

Encoded Coordinates

Introduce new name for $H(n-1)$

$$
\circ I(n+1)=H(n)
$$

Looks like a matrix multiplication right?

$$
\begin{aligned}
& \left(\begin{array}{l}
F(n+1) \\
G(n+1) \\
H(n+1) \\
I(n+1)
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
K & 0 & 0 & 1 \\
1 & K & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
F(n) \\
G(n) \\
H(n) \\
I(n)
\end{array}\right) \\
& \boldsymbol{v}_{n+1}=A \boldsymbol{v}_{n} \Rightarrow \boldsymbol{v}_{N}=A^{N-1} \boldsymbol{v}_{1}
\end{aligned}
$$

Find $H(0)$ with x and use matrix exponentiation to find $N^{\text {th }}$ element $O(\log N+P)$

Can you do it in $O(\log N+\log P)$?

Scores

Scoreboard BAPC 2013

final standings

\#	AFFIL.	TEAM			A \bigcirc	B	c	D \bigcirc	E \bigcirc	F	G	H	$1 \bigcirc$	$\mathrm{J} \bigcirc$
$\stackrel{ }{ } 1$	2-	Geen Syntax	10	1331	$2(80+20)$	$1(130+0)$	$2(69+20)$	$1(95+0)$	$1(172+0)$	$1(12+0)$	$4(244+60)$	$3(226+40)$	$1(7+0)$	$2(136+20)$
42	K	geen.opdracht5	10	1654	$3(116+40)$	$1(206+0)$	$3(195+40)$	$1(31+0)$	$1(238+0)$	$1(18+0)$	$2(257+20)$	$4(283+60)$	$1(16+0)$	$1(134+0)$
43	-	ALgorithmics Anonymous	6	635	$1(42+0)$	$1(205+0)$	$1(143+0)$	$3(187+40)$	0	$1(6+0)$	19	0	$1(12+0)$	4
$\checkmark 4$	(i)	UCool	6	845	$1(93+0)$	0	$3(209+40)$	$2(217+20)$	$1(196+0)$	$1(44+0)$	0	0	$1(26+0)$	0
\% 5		Mostly Harmless	6	976	$1(113+0)$	2	$2(151+20)$	$\begin{aligned} & 7(230+ \\ & 120) \end{aligned}$	0	$1(15+0)$	0	0	$1(9+0)$	$3(278+40)$
${ }^{*} 6$	-	sudo win	5	574	$5(152+80)$	0	1	$1(49+0)$	0	$1(19+0)$	$\begin{aligned} & 6(163+ \\ & 100) \end{aligned}$	5	$1(11+0)$	0
¢7		Epsilon Delta Delta	5	592	$1(133+0)$	0	4	$1(90+0)$	$3(288+40)$	$1(23+0)$	4	0	$1(18+0)$	0
"8	-	We Hopen Dat De Rest Dom Is	5	685	$1(127+0)$	0	$4(213+60)$	$1(243+0)$	0	$1(30+0)$	0	0	$1(12+0)$	0
$\stackrel{ }{ } 9$		Cout << "Ni";	4	421	$2(159+20)$	1	2	$1(195+0)$	0	$1(28+0)$	0	0	$1(19+0)$	0
-10	TU/	Vomit	4	459	$5(205+80)$	1	4	$1(154+0)$	0	$1(8+0)$	0	2	$1(12+0)$	0
$\stackrel{11}{ }$	(i)	WIR	4	462	$3(225+40)$	4	3	5	0	$1(30+0)$	0	$2(124+20)$	$1(23+0)$	0
-12	-	Team Amersfoort	4	490	$1(120+0)$	0	$3(273+40)$	7	0	$1(26+0)$	0	0	$1(31+0)$	0
-13	\%	Veni Vidi Velcro	4	675	$1(118+0)$	0	$3(203+40)$	0	0	$1(184+0)$	0	0	$1(130+0)$	0
-14		Onze naam was langer, maar...	3	86	$1(53+0)$	1	1	2	0	$1(10+0)$	0	3	$1(23+0)$	0
¢15	TU/e	Removed by administrator	3	294	5	0	2	$1(247+0)$	0	$1(20+0)$	0	0	$1(27+0)$	0

WHEN YOU COULD'VE GONE HOME...

We had fun :)
We hope you did too.
Let us know what you think.

See you next year! And we hope you agree...

